

1

dBm069 Testing Service
Description of the Test Cases executed

(Example)

dBm Ingenieros S.L.
C/ Ayala 75
28006 Madrid (ESPAÑA)
Tel. +34 638 743 807
Email: sales@dBmIngenieros.com
Web: www.dBm069.com
Updated: Sept. 4th 2018

2

3

INDEX

INDEX	...	3	

0	 Introduction	..	5	

1	 General	structure	of	automatic	test	cases	...	7	
1.1	 Sessions	...	7	
1.2	 Sequences	..	7	
1.3	 Requirements	...	8	

2	 Differen	kind	of	Actions	...	9	
2.1	 PatternMatch	..	9	
2.2	 WaitInform	...	10	
2.3	 WaitTransferComplete	..	10	
2.4	 IPConfig	..	10	
2.5	 LanPorts	...	10	
2.6	 WlanNetworks	..	11	
2.7	 WlanTestConnection	..	11	
2.8	 WlanNavigate	..	11	
2.9	 Navigate	...	11	
2.10	 NetworkShare	..	12	
2.11	 Http	Server	...	12	
2.11.1	 HttpServer/Start	...	12	
2.11.2	 UploadFile	..	12	
2.11.3	 DownloadFile	..	12	
2.11.4	 HttpServer/GetFileList	...	12	
2.11.5	 HttpServer/Delete	..	13	
2.11.6	 HttpServer/Stop	..	13	
2.12	 Ftp	Server	...	13	
2.12.1	 FtpServer/Start	..	13	
2.12.2	 UploadFile	..	13	
2.12.3	 DownloadFile	..	13	
2.12.4	 FtpServer/GetFileList	..	14	
2.12.5	 FtpServer/Delete	...	14	
2.12.6	 FtpServer/Stop	...	14	
2.13	 TlsCipherTest	...	14	
2.14	 TestOpenPort		(Traffic	Generator/Analyzer)	...	14	
2.15	 Script	..	16	

3	 Descriptions	of	Test	cases	..	17	
3.1	 GTW.TR069.cp.au.1	(Authentication-	Digest	or	Basic)	...	17	
3.2	 GTW.TR069.cp.perinfo.1	(Periodic	Inform	-	Operation)	..	18	
3.3	 GTW.TR069.cp.spv.2	(SPV	-	Multiple	parameters)	...	21	

4

5

0
0 Introduction

dBm069 is a software that automates TR-069 testing. In order to perform an automatic

Test Plan, dBm069 makes use of a library, which is an XML file that contains the definition

of the test cases. With dBm069 you can test a device independently of its data model, as

long as you have the right library.

The aim of this document is to provide a detailed description of the test cases contained in

the test report that has been generated by dBm069. This information is contained in

Chapter 3. Chapters 1 and 2 contain additional information to give you information about

how dBm069 executes the Test cases.

Chapter 1 includes the description of the general structure of a test case, as well as the

different tools that dB069 offers the users to create their own test cases.

Chapter 2 includes a list of all the different actions (complementary commands) that

dBm069 uses to be able to perform the Test cases automatically.

Description of all test cases included in the test report is included in Chapter 3.

6

7

1
1 General structure of automatic test cases

An automatic Test Case is a text written in XML format that describes all the steps that

dBm069 must perform to execute a TR-069 test. This text can be understood by a human

and also by the execution engine of dBm069 (once the Library is encrypted, that is,

converted from .xml to .lib format).

Information in automatic test cases is organized in three different blocks: Sessions;

Sequences; and Requirements.

1.1 Sessions

A session has the same meaning as a TR-069 session. It contains RPC methods, and it

can contain more than one RPC method if wished. When the ACS establishes a session,

CPE must respond with an Inform that contains the EventCode “6 ConnectionRequest”.

Every time that the user wants to implement a RPC method in the library, she needs to put

it inside a session.

1.2 Sequences

A sequence is a section of the library that does not contain RPC methods, but

complementary commands that dBm069 uses to complete a test plan. These

complementary commands inside sequences are called actions, and dBm069 uses them

for different purposes: to detect an Inform with a particular EventCode, to upload a FW

from the PC to the server to set the environment for a test where it is necessary to

download the file through TR-069, to open the http server, etc. Every time that the user

wants to implement an action in the library, she needs to put it inside a sequence.

In all the dBm069 actions the parameter “Report” can be configured. This parameter

contains two subparameters:

8

1. SuccesMessage: This parameter allows defining the message that will be shown at

the html report generated by dBm069 when the result of the executed action is

success.

2. ErrorMessage: This parameter allows defining the message that will be shown at

the html report generated by dBm069 when the result of the executed action is

failure.

Note that it is important to be careful defining these messages because sometimes the

expected result of an action is that it fails, so a success of the action means a failure of the

test case.

1.3 Requirements

Requirements contain all the conditions that dBm069 needs to check to decide whether a

test has passed or not. Not all test cases need the definition of requirements.

Requirements are only needed in those cases where in order to decide if the test passes

or not a verification of one or some conditions is needed.

Requirements contain two elements: Condition and Fail Message. The fail message will be

shown when the result of the evaluation expressed in the condition is False. Logical

expressions are used to check the conditions.

A condition is an expression that returns a logical value (true or false). Expressions can

contain variables, constant values, operators, parenthesis, and functions. Expressions are

fully described in next section.

Requirements will be executed only if all the previous steps of a test (sessions and

sequences) have been executed without causing an execution error. If any session or

sequence has caused an execution error, dBm069 will show an execution error message,

and the test will finish without checking the Requirements.

If there are no execution errors, and all conditions defined at the Requirements section are

correct, then the test result will be “Pass”.

9

2
2 Different kind of Actions

As it was explained before, actions are complementary commands that can be used inside

sequences, that dBm069 uses for different purposes, such us to detect an Inform with a

particular EventCode, to open the http server, etc.

This section describes the different actions that can be used in a sequence and its

parameters.

2.1 PatternMatch

There are some parameters that belong to a specific multi-instance object, and in order to

be able to execute automatic tests where those parameters are used, it is important to

know the number of this instance. The value of the instances of the object that are defined

in a CPE can change between different equipment, as well as on the history of tests

performed in a specific sample, so when performing manual tests the user needs to read

manually the data model of the equipment in order to find out which is the number of the

instance that contains the parameter that needs to be modified. When performing

automatic tests with dBm069, those instances can be read automatically using the action

“PatternMatch”. This allows preventing manual intervention during tests execution.

PatternMatch is thus an action that dBm069 uses to find out the instance of the object that

will be used as the parameter or part of it in any part of the test case.

PatternMatch action needs to use some RPC methods to read the name of the objects and

their instances that are going to be used in a test case. dBm069 software can use to

different RPC methods in order to obtain these objects:

1. GPN method: PatternMatch uses this method by default.

10

2. GPV method: PatternMatch uses this method only if the “RPC” parameter is

included in this action. This method is included in this action because we have

found some CPEs that do not support the GPN RPC method.

2.2 WaitInform

WaitInform is an action that dBm069 uses to detect an Inform (containing a specific

EventCode, or simply the first to arrive).

2.3 WaitTransferComplete

WaitTransferComplete is an action that dBm069 uses to detect the Inform that contains

the EventCode “TransferComplete” after the transfer of a file.

2.4 IPConfig

IPConfig is an action that dBm069 uses to read the data of a network connection of the PC

(similar to the console IPconfig command). This is the way that dBm069 uses to check that

the real data of a network connection are the same as the data configured and read by

means of TR-069.

2.5 LanPorts

LanPorts is an action that dBm069 uses to enable or disable either all the Ethernet

network adapters connected to a specific IP, or one specific Ethernet network adapter.

This is the way that dBm069 uses to connect and disconnect automatically the

complementary equipment necessary for some test cases, e.g. GTW.TR069.098.f.hstlan.i.

All the Ethernet network adapters that are disabled using this action are enabled again at

the end of the test by this action.

When this action is used in a test case, it is necessary to define an element of the

following two depending on whether the user wants to disable or to enable the network

adapters:

1. Disable: allows the user to disable the Ethernet network adapters connected to a

specific IP.

11

Note that before disabling an Ethernet network adapter it is necessary to execute

the action “IPconfig release” in order to release the IP that is using this network

adapter.

2. Enable: allows the user to enable all the Ethernet network adapters that have been

previously disabled.

2.6 WlanNetworks

WlanNetworks is an action that dBm069 uses to detect the list of available WLAN

networks, i.e. the list of available Wi-Fi networks.

2.7 WlanTestConnection

WlanTestConnection is an action that dBm069 uses to connect the PC to a specified

WLAN network, i.e. to a specified Wi-Fi network. Once that it has been possible to check

the connection to the specified WLAN, this action disconnects it.

2.8 WlanNavigate

WlanNavigate is an action that dBm069 uses to navigate on different websites using the

WLAN connection, i.e. using the Wi-Fi connection. This action performs the following

operations:

1. First the PC is connected to the specified Wi-Fi network.

2. The PC navigates on the Internet addressing to the specified web site.

3. Finally, the WLAN connection is disconnected.

2.9 Navigate

Navigate is an action that dBm069 uses to navigate in different websites using the LAN

connection of the CPE side.

12

2.10 NetworkShare

NetworkShare is an action that dBm069 uses to access a shared directory . This is the

way that dBm069 uses to check the access and the contents of a USB memory stick

connected to the CPE.

2.11 Http Server

dBm069 contains a http server that enables to perform automatically all the tests that

include upload and download of files using a http server.

Http server is created/started and stopped during execution of the test plan using actions.

Next follows the description of all actions that can be performed with the http server.

2.11.1 HttpServer/Start

HttpServer/Start is an action that dBm069 uses to create/open the http server if it has

never been created before, or to start it, if it has been previously created.

2.11.2 UploadFile

UploadFile is an action that dBm069 uses to upload a file from the PC to the http server.

This is the way that dBm069 uses to put in the http server the files that will be needed for

executing the tests. Note that before executing this action, the server must be previously

started.

2.11.3 DownloadFile

DownloadFile is an action that dBm069 uses to download a file from the http server to the

PC. This action is used when the objective is to overload the line at the down direction.

Note that before executing this action, the server must be previously started.

2.11.4 HttpServer/GetFileList

HttpServer/GetFileList is an action that dBm069 uses to get the list of files that are located

in the http server or to check if a particular file is located in the http server.This functionality

is not defined in http protocol, but this action has been implemented to allow this

verification in test cases that require it.

13

2.11.5 HttpServer/Delete

HttpServer/Delete is an action that dBm069 uses to delete either a specific file or the

whole list of files that are located in the http server. The server must be previously started.

This is not a proper function of the http protocol but this action has been implemented in

our http server because it is necessary to check the operation of some tests.

2.11.6 HttpServer/Stop

HttpServer/Stop is an action that dBm069 uses to stop the http server.

2.12 Ftp Server

dBm069 contains a Ftp server that enables to perform automatically all the tests that

include upload and download of files using a ftp server.

Ftp server enables upload and download of files using ftp. Server is created when required

and it uses the proper ports of a ftp connection.

Next follows the description of all actions that can be performed with the ftp server.

2.12.1 FtpServer/Start

FtpServer/Start is an action that dBm069 uses to create/open the ftp server if it has never

been created before, or to start it, if it has been previously created.

2.12.2 UploadFile

UploadFile is an action that dBm069 uses to upload a file from the PC to the ftp server.

This is the way that dBm069 uses to put in the ftp server the files that will be needed for

executing the tests. Note that before executing this action, the server must be previously

started.

2.12.3 DownloadFile

DownloadFile is an action that dBm069 uses to download a file from the ftp server to PC.

This action is used when the objective is to overload the line at the down direction. Note

that before executing this action, the server must be previously started.

14

2.12.4 FtpServer/GetFileList

FtpServer/GetFileList is an action that dBm069 uses to obtain the list of files that are

located in the ftp server or to check if a particular file is located in the ftp server. This

funcition is not defined in ftp protocol, but this action has been implemented to allow this

verification in those test cases which require it.

2.12.5 FtpServer/Delete

FtpServer/Delete is an action that dBm069 uses to delete either a specific file or the whole

list of files that are located in the ftp server. This is not a proper function of the ftp protocol

but this action has been implemented in our ftp server because it is necessary to check the

operation of some tests.

2.12.6 FtpServer/Stop

FtpServer/Stop is an action that dBm069 uses to stop the ftp server.

This action does not have any parameter because it can only be used if there is an ftp

server started, and the action will stop the ftp server that was previously opened in the

test.

2.13 TlsCipherTest

TlsCipherTest is an action that dBm069 uses to check if the https server of the CPE uses

any of the encryptions included in a list, in one particular or different communication

protocols.

2.14 TestOpenPort (Traffic Generator/Analyzer)

dBm069 contains a traffic generator/analyzer that enables sending UDP or TCP traffic to

any port range with a specified speed (bitrate). This is the way that dBm069 uses to check

if a port or a port range is open or closed and to check if a filter is working correctly.

dBm069 uses the action “TestOpenPort” to make some operations with the traffic

generator/analyzer in a test.

TestOpenPort is an action that dBm069 uses to check if a port or a port range is really

open or closed after it has been open/closed by means of TR069. dBm069 checks if a port

15

range is open sending some traffic through this port range and detecting if this traffic is

received.

The process that dBm069 uses to check the traffic is described bellow:

1. Traffic is generated from the support router to the public IP address of the CPE

using the external port range specified.

2. This traffic should be received in the CPE side using the internal port range

specified.

3. Test duration is 1 minute.

4. Action result:

a. If 25% of the expected traffic is received at every port, the action result will

be “success” and it will finish, because this will show that the port is really

open.

b. If 25% of the expected traffic is not received at any port after a minute, the

action result will be “failure” and it will finish. In this case the list of internal

ports that do not receive the expected traffic will appear at the “Events”

window of dBm069.

dBm069 traffic generator/analyzer contains:

1. An agent that transmits the traffic and that is executed in the server (http server).

2. An agent that receives the traffic and that is executed at the PC where dBm069 is

installed.

Both agents are controlled by the PC where dBm069 is installed.

dBm069 traffic generator/analyzer is very versatile and it enables the execution of tests

using up to the layer 4. The traffic generator/analyzer contains a TrafficShaping module

16

that enables sending packets with a very accurate speed, although it is based in a PC and

the jitter cannot be controlled it is enough for TR-069 testing.

2.15 Script

In order to be able to perform automatic tests, there are some tests that require the

execution of scripts in order to prevent the loss of connection between the ACS and the

CPE, as for example put the correct configuration file after doing a FactoryReset. When

performing manual tests the user needs to change the configuration manually in each test

where the change of the configuration can cause the loss of connection between the ACS

and the CPE. When performing automatic tests, the change of the configuration file is

executed automatically using a Script. This allows preventing that the software needs to

stop during tests execution in order to allow the user to change the configuration of the

CPE when the corresponding test is going to be executed.

Script is an action that dBm069 uses to make some modifications in the configuration of

the CPE or to send some commands to the CPE using telnet, SSH or rs232.

17

3
3 Descriptions of Test cases

3.1 GTW.TR069.cp.au.1 (Authentication- Digest or Basic)

Ø Description

The goal of this test is to check that the CPE can successfully establish a CWMP

session with the ACS using digest authentication.

Ø Test Steps

1. Open a sequence to detect the Inform that contains the eventcode “6

ConnectionRequest” using the action “WaitInform”. The value of the parameter

Waittofinish must be false because we want to detect the Inform sent due to the

next session. We also capture using an execution variable the authentication

used by CPE.The parameter “Report” is used in order to define the success and

error messages that are going to be shown at the html report.

2. Open a session to execute SetParameterValues method to disable the periodic

Inform. It is necessary to disable the periodic Inform to avoid some confusions

with the informs.

3. Requirements contain the following conditions.

a. Conditions 1 and 2: Check that CPE uses digest authentication according to

the standard (see TR-069 point 3.2.2.2). The OR operator is used to show

the correct failure message when the authentication used by CPE is different

than “Digest”.

18

3.2 GTW.TR069.cp.perinfo.1 (Periodic Inform - Operation)

Ø Description

The goal of this test is to check that the Periodic Inform functionality in the CPE is

correct according to the standard requirements: it sends an Inform with the

EventCode 2, and the measured periodic Inform interval is the same than the one

configured in the equipment. This is checked for different values of the

PeriodicInformInterval.

Ø Test steps

1. Open a session to execute the SetParameterValues method to enable the

periodic Inform and to fix the periodic Inform interval.

2. Open a sequence to detect the Inform that contains the eventcode “2 Periodic”

using the action “WaitInform”. The value of the parameter Waittofinish must be

true because we want to wait to the finish of this action to continue with the test.

We also capture using an execution variable when the periodic Inform is sent.

The value of the parameter Timeout should be higher than the value of the

periodic Inform to detect this Inform. The parameter “Report” is used in order to

define the success and error messages that are going to be shown at the html

report.

3. Open a session to execute GetParameterValues method to check that the

values modified in the SetParameterValues method have changed correctly.

4. Open a sequence to detect the Inform that contains the eventcode “2 Periodic”

using the action “WaitInform”. The value of the parameter Waittofinish must be

true because we want to wait to the finish of this action to continue with the test.

We also capture using an execution variable when the periodic Inform is sent

and calculate the periodic Inform interval. The value of the parameter Timeout

should be higher than the value of the periodic Inform to detect this Inform. The

19

parameter “Report” is used in order to define the success and error messages

that are going to be shown at the html report.

5. Repeat the steps from 1 to 4 with a different value of the periodic Inform interval.

6. Repeat again the steps from 1 to 4 with a third different value of the periodic

Inform interval.

1. Requirements contain the following conditions. Note that execution variables

obtained from the SPV, GPV and waitInform are used to check conditions:

a. Conditions 1 to 4: Check that the value of the parameters modified in the

SetParameterValues methods have changed correctly

b. Conditions 5 and 6: Check that CPE sends two informs that contain the

eventcode (2) for the first value of the periodic Inform interval (First and

second WaitInform must detect an inform)

c. Conditions 7 and 8: Check that the first periodic Inform interval calculated

using execution variable is the same than the first periodic Inform interval

configured in the equipment (with a permissible deviation of 5 seconds)

d. Conditions 9 and 10: Check that CPE sends two informs that contain the

eventcode (2) for the second value of the periodic Inform interval (Third

and fourth WaitInform must detect an inform)

e. Conditions 11 and 12: Check that the second periodic Inform interval

calculated using execution variable is the same than the second periodic

Inform interval configured in the equipment (with a permissible deviation

of 1 second)

f. Conditions 13 and 14: Check that CPE sends two informs that contain the

eventcode (2) for the third value of the periodic Inform interval (Fifth and

sixth WaitInform must detect an inform)

20

g. Conditions 15 and 16: Check that the third periodic Inform interval

calculated using execution variable is the same than the third periodic

Inform interval configured in the equipment (with a permissible deviation

of 1 minute)

21

3.3 GTW.TR069.cp.spv.2 (SPV - Multiple parameters)
Ø Description

The goal of this test is to check that it is possible to execute the

SetParameterValues method in the CPE to configure the value of multiple

parameters.

Ø Test steps

1. Open a session to execute SetParameterValues method to configure the value

of two parameters.

2. Open a session to execute GetParameterValues method to check that the

values modified in the SetParameterValues method have changed correctly.

3. Requirements contain the following conditions. Note that execution variables

obtained from the SPV and GPV are used to check conditions:

a. Conditions 1 and 2: Check that the values of the parameters modified in

the SetParameterValues method have changed correctly.

22

3.4 GTW.TR069.cp.ao.3 (AO - Error Conditions)

Ø Description

The goal of this test is to check that the CPE returns the appropriate error code

according to the standard if the AddObject is executed with:

1. A wrong parameter name.

2. An object name without a “.” at the end of the name

3. A not multi-instance object

Ø Test Steps

1. Open a session to execute AddObject method to create a new instance of a

multi-instance object that does not exist. The ExpectedResult of this method is

set to Failure and the “IgnoreFail” element is included because, if TR-069

protocol is correctly implemented in the CPE, this method will fail and doing it

this way, we will avoid this execution error allowing dBm069 being able to check

the conditions defined at the Requirements block, using the execution variable

=Error()(see “Multi-instance objects: Instance read at object creation” in order to

understand how to use the instance)

2. Open a session to execute AddObject method to create a new instance of a

multi-instance object without a “.” at the end of its name. The ExpectedResult of

this method is set to Failure and the “IgnoreFail” element is included because, if

TR-069 protocol is correctly implemented in the CPE, this method will fail and

doing it this way, we will avoid this execution error allowing dBm069 being able

to check the conditions defined at the Requirements block, using the execution

variable =Error()(see “Multi-instance objects: Instance read at object creation” in

order to understand how to use the instance)

3. Open a session to execute AddObject method to create a new instance of a not

multi-instance object. The ExpectedResult of this method will be ignore

because, if TR-069 protocol is correctly implemented in the CPE, this method

23

will fail and it is necessary to avoid this execution error allowing dBm069 being

able to check the conditions defined at the Requirements block, using the

execution variable =Error()(see “Multi-instance objects: Instance read at object

creation” in order to understand how to use the instance)

4. Requirements contain the following conditions. Note that execution variables

obtained from the AO method are used to check conditions:

a. Condition 1: Check that the FaultCode that read in the first

AddObjectResponse method is greater than 0, i.e. the AO method is not

executed correctly with a name of a parameter that does not exist.

b. Condition 2: Check that the FaultCode read in the first

AddObjectResponse method is the same as expected. The OR operator

is used to avoid that this failure is shown when the AO method is

executed correctly

c. Condition 3: Check that the FaultCode read in the second

AddObjectResponse method is greater than 0, i.e. the AO method is not

executed correctly without a “.” at the end of its name.

d. Condition 4: Check that the FaultCode read in the second

AddObjectResponse method is the same as expected. The OR operator

is used to avoid that this failure is shown when the AO method is

executed correctly

e. Condition 5: Check that the FaultCode read in the third

AddObjectResponse method is greater than 0, i.e. the AO method is not

executed correctly with a name of a not multi-instance object

f. Condition 6: Check that the FaultCode read in the third

AddObjectResponse method is the same as expected. The OR operator

is used to avoid that this failure is shown when the AO method is

executed correctly

